Score: 0

Learning Dolly-In Filming From Demonstration Using a Ground-Based Robot

Published: August 30, 2025 | arXiv ID: 2509.00574v1

By: Philip Lorimer, Alan Hunter, Wenbin Li

Potential Business Impact:

Robot cameras learn to film like humans.

Business Areas:
Motion Capture Media and Entertainment, Video

Cinematic camera control demands a balance of precision and artistry - qualities that are difficult to encode through handcrafted reward functions. While reinforcement learning (RL) has been applied to robotic filmmaking, its reliance on bespoke rewards and extensive tuning limits creative usability. We propose a Learning from Demonstration (LfD) approach using Generative Adversarial Imitation Learning (GAIL) to automate dolly-in shots with a free-roaming, ground-based filming robot. Expert trajectories are collected via joystick teleoperation in simulation, capturing smooth, expressive motion without explicit objective design. Trained exclusively on these demonstrations, our GAIL policy outperforms a PPO baseline in simulation, achieving higher rewards, faster convergence, and lower variance. Crucially, it transfers directly to a real-world robot without fine-tuning, achieving more consistent framing and subject alignment than a prior TD3-based method. These results show that LfD offers a robust, reward-free alternative to RL in cinematic domains, enabling real-time deployment with minimal technical effort. Our pipeline brings intuitive, stylized camera control within reach of creative professionals, bridging the gap between artistic intent and robotic autonomy.

Page Count
7 pages

Category
Computer Science:
Robotics