Score: 0

Quantum Circuits for Quantum Convolutions: A Quantum Convolutional Autoencoder

Published: August 30, 2025 | arXiv ID: 2509.00637v1

By: Javier Orduz, Pablo Rivas, Erich Baker

Potential Business Impact:

Quantum computers learn faster by using special math.

Business Areas:
Quantum Computing Science and Engineering

Quantum machine learning deals with leveraging quantum theory with classic machine learning algorithms. Current research efforts study the advantages of using quantum mechanics or quantum information theory to accelerate learning time or convergence. Other efforts study data transformations in the quantum information space to evaluate robustness and performance boosts. This paper focuses on processing input data using randomized quantum circuits that act as quantum convolutions producing new representations that can be used in a convolutional network. Experimental results suggest that the performance is comparable to classic convolutional neural networks, and in some instances, using quantum convolutions can accelerate convergence.

Country of Origin
🇺🇸 United States

Page Count
11 pages

Category
Physics:
Quantum Physics