An LLM-enabled semantic-centric framework to consume privacy policies
By: Rui Zhao , Vladyslav Melnychuk , Jun Zhao and more
Potential Business Impact:
Helps computers understand website privacy rules.
In modern times, people have numerous online accounts, but they rarely read the Terms of Service or Privacy Policy of those sites, despite claiming otherwise, due to the practical difficulty in comprehending them. The mist of data privacy practices forms a major barrier for user-centred Web approaches, and for data sharing and reusing in an agentic world. Existing research proposed methods for using formal languages and reasoning for verifying the compliance of a specified policy, as a potential cure for ignoring privacy policies. However, a critical gap remains in the creation or acquisition of such formal policies at scale. We present a semantic-centric approach for using state-of-the-art large language models (LLM), to automatically identify key information about privacy practices from privacy policies, and construct $\mathit{Pr}^2\mathit{Graph}$, knowledge graph with grounding from Data Privacy Vocabulary (DPV) for privacy practices, to support downstream tasks. Along with the pipeline, the $\mathit{Pr}^2\mathit{Graph}$ for the top-100 popular websites is also released as a public resource, by using the pipeline for analysis. We also demonstrate how the $\mathit{Pr}^2\mathit{Graph}$ can be used to support downstream tasks by constructing formal policy representations such as Open Digital Right Language (ODRL) or perennial semantic Data Terms of Use (psDToU). To evaluate the technology capability, we enriched the Policy-IE dataset by employing legal experts to create custom annotations. We benchmarked the performance of different large language models for our pipeline and verified their capabilities. Overall, they shed light on the possibility of large-scale analysis of online services' privacy practices, as a promising direction to audit the Web and the Internet. We release all datasets and source code as public resources to facilitate reuse and improvement.
Similar Papers
A Longitudinal Measurement of Privacy Policy Evolution for Large Language Models
Cryptography and Security
Makes AI companies share how they use your data.
Hybrid Privacy Policy-Code Consistency Check using Knowledge Graphs and LLMs
Cryptography and Security
Finds apps that lie about your privacy.
"You don't need a university degree to comprehend data protection this way": LLM-Powered Interactive Privacy Policy Assessment
Human-Computer Interaction
Helps you understand website privacy rules easily.