Implicit Actor Critic Coupling via a Supervised Learning Framework for RLVR
By: Jiaming Li , Longze Chen , Ze Gong and more
Potential Business Impact:
Helps computers solve math problems better.
Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have empowered large language models (LLMs) to tackle challenging reasoning tasks such as mathematics and programming. RLVR leverages verifiable outcome rewards to guide policy optimization, enabling LLMs to progressively improve output quality in a grounded and reliable manner. Despite its promise, the RLVR paradigm poses significant challenges, as existing methods often suffer from sparse reward signals and unstable policy gradient updates, particularly in RL-based approaches. To address the challenges, we propose $\textbf{PACS}$, a novel RLVR framework that achieves im$\textbf{P}$licit $\textbf{A}$ctor $\textbf{C}$ritic coupling via a $\textbf{S}$upervised learning framework. By treating the outcome reward as a predictable label, we reformulate the RLVR problem into a supervised learning task over a score function parameterized by the policy model and optimized using cross-entropy loss. A detailed gradient analysis shows that this supervised formulation inherently recovers the classical policy gradient update while implicitly coupling actor and critic roles, yielding more stable and efficient training. Benchmarking on challenging mathematical reasoning tasks, PACS outperforms strong RLVR baselines, such as PPO and GRPO, achieving superior reasoning performance. For instance, PACS achieves 59.78\% at pass@256 on AIME 2025, representing improvements of 13.32 and 14.36 points over PPO and GRPO. This simple yet powerful framework offers a promising avenue for LLMs post-training with verifiable rewards. Our code and data are available as open source at https://github.com/ritzz-ai/PACS.
Similar Papers
PACR: Progressively Ascending Confidence Reward for LLM Reasoning
Artificial Intelligence
Helps AI learn faster by rewarding good thinking steps.
Enhancing Vision-Language Model Training with Reinforcement Learning in Synthetic Worlds for Real-World Success
Machine Learning (CS)
Teaches computers to act in new worlds.
RLAC: Reinforcement Learning with Adversarial Critic for Free-Form Generation Tasks
Machine Learning (CS)
Makes AI write better stories and code.