Beyond Ordinary Lipschitz Constraints: Differentially Private Stochastic Optimization with Tsybakov Noise Condition
By: Difei Xu , Meng Ding , Zihang Xiang and more
Potential Business Impact:
Protects personal data while learning from it.
We study Stochastic Convex Optimization in the Differential Privacy model (DP-SCO). Unlike previous studies, here we assume the population risk function satisfies the Tsybakov Noise Condition (TNC) with some parameter $\theta>1$, where the Lipschitz constant of the loss could be extremely large or even unbounded, but the $\ell_2$-norm gradient of the loss has bounded $k$-th moment with $k\geq 2$. For the Lipschitz case with $\theta\geq 2$, we first propose an $(\varepsilon, \delta)$-DP algorithm whose utility bound is $\Tilde{O}\left(\left(\tilde{r}_{2k}(\frac{1}{\sqrt{n}}+(\frac{\sqrt{d}}{n\varepsilon}))^\frac{k-1}{k}\right)^\frac{\theta}{\theta-1}\right)$ in high probability, where $n$ is the sample size, $d$ is the model dimension, and $\tilde{r}_{2k}$ is a term that only depends on the $2k$-th moment of the gradient. It is notable that such an upper bound is independent of the Lipschitz constant. We then extend to the case where $\theta\geq \bar{\theta}> 1$ for some known constant $\bar{\theta}$. Moreover, when the privacy budget $\varepsilon$ is small enough, we show an upper bound of $\tilde{O}\left(\left(\tilde{r}_{k}(\frac{1}{\sqrt{n}}+(\frac{\sqrt{d}}{n\varepsilon}))^\frac{k-1}{k}\right)^\frac{\theta}{\theta-1}\right)$ even if the loss function is not Lipschitz. For the lower bound, we show that for any $\theta\geq 2$, the private minimax rate for $\rho$-zero Concentrated Differential Privacy is lower bounded by $\Omega\left(\left(\tilde{r}_{k}(\frac{1}{\sqrt{n}}+(\frac{\sqrt{d}}{n\sqrt{\rho}}))^\frac{k-1}{k}\right)^\frac{\theta}{\theta-1}\right)$.
Similar Papers
On the Gradient Complexity of Private Optimization with Private Oracles
Machine Learning (CS)
Makes private computer learning faster and more efficient.
PLRV-O: Advancing Differentially Private Deep Learning via Privacy Loss Random Variable Optimization
Cryptography and Security
Keeps AI learning private without losing accuracy.
Efficient Public Verification of Private ML via Regularization
Machine Learning (CS)
Lets you check if private data stays private.