Efficient Exact Resistance Distance Computation on Small-Treewidth Graphs: a Labelling Approach
By: Meihao Liao , Yueyang Pan , Rong-Hua Li and more
Potential Business Impact:
Finds shortest paths faster in road maps.
Resistance distance computation is a fundamental problem in graph analysis, yet existing random walk-based methods are limited to approximate solutions and suffer from poor efficiency on small-treewidth graphs (e.g., road networks). In contrast, shortest-path distance computation achieves remarkable efficiency on such graphs by leveraging cut properties and tree decompositions. Motivated by this disparity, we first analyze the cut property of resistance distance. While a direct generalization proves impractical due to costly matrix operations, we overcome this limitation by integrating tree decompositions, revealing that the resistance distance $r(s,t)$ depends only on labels along the paths from $s$ and $t$ to the root of the decomposition. This insight enables compact labelling structures. Based on this, we propose \treeindex, a novel index method that constructs a resistance distance labelling of size $O(n \cdot h_{\mathcal{G}})$ in $O(n \cdot h_{\mathcal{G}}^2 \cdot d_{\max})$ time, where $h_{\mathcal{G}}$ (tree height) and $d_{\max}$ (maximum degree) behave as small constants in many real-world small-treewidth graphs (e.g., road networks). Our labelling supports exact single-pair queries in $O(h_{\mathcal{G}})$ time and single-source queries in $O(n \cdot h_{\mathcal{G}})$ time. Extensive experiments show that TreeIndex substantially outperforms state-of-the-art approaches. For instance, on the full USA road network, it constructs a $405$ GB labelling in $7$ hours (single-threaded) and answers exact single-pair queries in $10^{-3}$ seconds and single-source queries in $190$ seconds--the first exact method scalable to such large graphs.
Similar Papers
Theoretically and Practically Efficient Resistance Distance Computation on Large Graphs
Machine Learning (CS)
Finds connections in networks much faster.
Improved Algorithms for Effective Resistance Computation on Graphs
Data Structures and Algorithms
Finds important connections in computer networks faster.
Mixing Time Matters: Accelerating Effective Resistance Estimation via Bidirectional Method
Social and Information Networks
Finds connections in networks much faster.