Beyond ROUGE: N-Gram Subspace Features for LLM Hallucination Detection
By: Jerry Li, Evangelos Papalexakis
Potential Business Impact:
Finds fake computer-made words in text.
Large Language Models (LLMs) have demonstrated effectiveness across a wide variety of tasks involving natural language, however, a fundamental problem of hallucinations still plagues these models, limiting their trustworthiness in generating consistent, truthful information. Detecting hallucinations has quickly become an important topic, with various methods such as uncertainty estimation, LLM Judges, retrieval augmented generation (RAG), and consistency checks showing promise. Many of these methods build upon foundational metrics, such as ROUGE, BERTScore, or Perplexity, which often lack the semantic depth necessary to detect hallucinations effectively. In this work, we propose a novel approach inspired by ROUGE that constructs an N-Gram frequency tensor from LLM-generated text. This tensor captures richer semantic structure by encoding co-occurrence patterns, enabling better differentiation between factual and hallucinated content. We demonstrate this by applying tensor decomposition methods to extract singular values from each mode and use these as input features to train a multi-layer perceptron (MLP) binary classifier for hallucinations. Our method is evaluated on the HaluEval dataset and demonstrates significant improvements over traditional baselines, as well as competitive performance against state-of-the-art LLM judges.
Similar Papers
The Illusion of Progress: Re-evaluating Hallucination Detection in LLMs
Computation and Language
Fixes AI mistakes that humans can't see.
Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
Machine Learning (CS)
Makes AI tell the truth, not make things up.
Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection
Computation and Language
Helps AI tell true stories from fake ones.