Query Expansion in the Age of Pre-trained and Large Language Models: A Comprehensive Survey
By: Minghan Li , Xinxuan Lv , Junjie Zou and more
Potential Business Impact:
Helps computers find better answers to your questions.
Modern information retrieval (IR) must bridge short, ambiguous queries and ever more diverse, rapidly evolving corpora. Query Expansion (QE) remains a key mechanism for mitigating vocabulary mismatch, but the design space has shifted markedly with pre-trained language models (PLMs) and large language models (LLMs). This survey synthesizes the field from three angles: (i) a four-dimensional framework of query expansion - from the point of injection (explicit vs. implicit QE), through grounding and interaction (knowledge bases, model-internal capabilities, multi-turn retrieval) and learning alignment, to knowledge graph-based argumentation; (ii) a model-centric taxonomy spanning encoder-only, encoder-decoder, decoder-only, instruction-tuned, and domain/multilingual variants, highlighting their characteristic affordances for QE (contextual disambiguation, controllable generation, zero-/few-shot reasoning); and (iii) practice-oriented guidance on where and how neural QE helps in first-stage retrieval, multi-query fusion, re-ranking, and retrieval-augmented generation (RAG). We compare traditional query expansion with PLM/LLM-based methods across seven key aspects, and we map applications across web search, biomedicine, e-commerce, open-domain QA/RAG, conversational and code search, and cross-lingual settings. The review distills design grounding and interaction, alignment/distillation (SFT/PEFT/DPO), and KG constraints - as robust remedies to topic drift and hallucination. We conclude with an agenda on quality control, cost-aware invocation, domain/temporal adaptation, evaluation beyond end-task metrics, and fairness/privacy. Collectively, these insights provide a principled blueprint for selecting and combining QE techniques under real-world constraints.
Similar Papers
Generative Query Expansion with Multilingual LLMs for Cross-Lingual Information Retrieval
Information Retrieval
Helps computers find information in different languages.
Upcycling Candidate Tokens of Large Language Models for Query Expansion
Information Retrieval
Finds better search results with less computer power.
Rethinking On-policy Optimization for Query Augmentation
Computation and Language
Helps computers find information faster and better.