Score: 0

Psychiatry-Bench: A Multi-Task Benchmark for LLMs in Psychiatry

Published: September 7, 2025 | arXiv ID: 2509.09711v1

By: Aya E. Fouda , Abdelrahamn A. Hassan , Radwa J. Hanafy and more

Potential Business Impact:

Tests AI for better mental health help.

Business Areas:
Test and Measurement Data and Analytics

Large language models (LLMs) hold great promise in enhancing psychiatric practice, from improving diagnostic accuracy to streamlining clinical documentation and therapeutic support. However, existing evaluation resources heavily rely on small clinical interview corpora, social media posts, or synthetic dialogues, which limits their clinical validity and fails to capture the full complexity of psychiatric reasoning. In this work, we introduce PsychiatryBench, a rigorously curated benchmark grounded exclusively in authoritative, expert-validated psychiatric textbooks and casebooks. PsychiatryBench comprises eleven distinct question-answering tasks ranging from diagnostic reasoning and treatment planning to longitudinal follow-up, management planning, clinical approach, sequential case analysis, and multiple-choice/extended matching formats totaling over 5,300 expert-annotated items. We evaluate a diverse set of frontier LLMs (including Google Gemini, DeepSeek, LLaMA 3, and QWQ-32) alongside leading open-source medical models (e.g., OpenBiloLLM, MedGemma) using both conventional metrics and an "LLM-as-judge" similarity scoring framework. Our results reveal substantial gaps in clinical consistency and safety, particularly in multi-turn follow-up and management tasks, underscoring the need for specialized model tuning and more robust evaluation paradigms. PsychiatryBench offers a modular, extensible platform for benchmarking and improving LLM performance in high-stakes mental health applications.

Page Count
52 pages

Category
Computer Science:
Computation and Language