Score: 1

Arabic Large Language Models for Medical Text Generation

Published: September 12, 2025 | arXiv ID: 2509.10095v1

By: Abdulrahman Allam , Seif Ahmed , Ali Hamdi and more

Potential Business Impact:

Helps doctors give better advice in Arabic.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Efficient hospital management systems (HMS) are critical worldwide to address challenges such as overcrowding, limited resources, and poor availability of urgent health care. Existing methods often lack the ability to provide accurate, real-time medical advice, particularly for irregular inputs and underrepresented languages. To overcome these limitations, this study proposes an approach that fine-tunes large language models (LLMs) for Arabic medical text generation. The system is designed to assist patients by providing accurate medical advice, diagnoses, drug recommendations, and treatment plans based on user input. The research methodology required the collection of a unique dataset from social media platforms, capturing real-world medical conversations between patients and doctors. The dataset, which includes patient complaints together with medical advice, was properly cleaned and preprocessed to account for multiple Arabic dialects. Fine-tuning state-of-the-art generative models, such as Mistral-7B-Instruct-v0.2, LLaMA-2-7B, and GPT-2 Medium, optimized the system's ability to generate reliable medical text. Results from evaluations indicate that the fine-tuned Mistral-7B model outperformed the other models, achieving average BERT (Bidirectional Encoder Representations from Transformers) Score values in precision, recall, and F1-scores of 68.5\%, 69.08\%, and 68.5\%, respectively. Comparative benchmarking and qualitative assessments validate the system's ability to produce coherent and relevant medical replies to informal input. This study highlights the potential of generative artificial intelligence (AI) in advancing HMS, offering a scalable and adaptable solution for global healthcare challenges, especially in linguistically and culturally diverse environments.

Page Count
7 pages

Category
Computer Science:
Computation and Language