Score: 0

Using joint models in phase I dose-finding designs in oncology: considerations for frequentist approaches

Published: September 12, 2025 | arXiv ID: 2509.10238v1

By: Xijin Chen , Pavel Mozgunov , Richard D. Baird and more

Potential Business Impact:

Finds safer cancer drug doses faster.

Business Areas:
Clinical Trials Health Care

Dose-finding trials for oncology studies are traditionally designed to assess safety in the early stages of drug development. With the rise of molecularly targeted therapies and immuno-oncology compounds, biomarker-driven approaches have gained significant importance. In this paper, we propose a novel approach that incorporates multiple values of a predictive biomarker to assist in evaluating binary toxicity outcomes using the factorization of a joint model in phase I dose-finding oncology trials. The proposed joint model framework, which utilizes additional repeated biomarker values as an early predictive marker for potential toxicity, is compared to the likelihood-based continual reassessment method (CRM) using only binary toxicity data, across various dose-toxicity relationship scenarios. Our findings highlight a critical limitation of likelihood-based approaches in early-phase dose-finding studies with small sample sizes: estimation challenges that have been previously overlooked in the phase I dose-escalation setting. We explore potential remedies to address these challenges and emphasize the appropriate use of likelihood-based methods. Simulation results demonstrate that the proposed joint model framework, by integrating biomarker information, can alleviate estimation problems in the the likelihood-based continual reassessment method (CRM) and improve the proportion of correct selection. However, we highlight that the inherent data limitations in early-phase dose-finding studies remain a significant challenge that cannot fully be overcomed in the frequentist framework.

Page Count
39 pages

Category
Statistics:
Methodology