Score: 2

Filling the Gaps: A Multitask Hybrid Multiscale Generative Framework for Missing Modality in Remote Sensing Semantic Segmentation

Published: September 14, 2025 | arXiv ID: 2509.11102v1

By: Nhi Kieu , Kien Nguyen , Arnold Wiliem and more

Potential Business Impact:

Helps computers understand Earth pictures even when data is missing.

Business Areas:
Semantic Search Internet Services

Multimodal learning has shown significant performance boost compared to ordinary unimodal models across various domains. However, in real-world scenarios, multimodal signals are susceptible to missing because of sensor failures and adverse weather conditions, which drastically deteriorates models' operation and performance. Generative models such as AutoEncoder (AE) and Generative Adversarial Network (GAN) are intuitive solutions aiming to reconstruct missing modality from available ones. Yet, their efficacy in remote sensing semantic segmentation remains underexplored. In this paper, we first examine the limitations of existing generative approaches in handling the heterogeneity of multimodal remote sensing data. They inadequately capture semantic context in complex scenes with large intra-class and small inter-class variation. In addition, traditional generative models are susceptible to heavy dependence on the dominant modality, introducing bias that affects model robustness under missing modality conditions. To tackle these limitations, we propose a novel Generative-Enhanced MultiModal learning Network (GEMMNet) with three key components: (1) Hybrid Feature Extractor (HyFEx) to effectively learn modality-specific representations, (2) Hybrid Fusion with Multiscale Awareness (HyFMA) to capture modality-synergistic semantic context across scales and (3) Complementary Loss (CoLoss) scheme to alleviate the inherent bias by encouraging consistency across modalities and tasks. Our method, GEMMNet, outperforms both generative baselines AE, cGAN (conditional GAN), and state-of-the-art non-generative approaches - mmformer and shaspec - on two challenging semantic segmentation remote sensing datasets (Vaihingen and Potsdam). Source code is made available.

Country of Origin
🇦🇺 Australia

Repos / Data Links

Page Count
8 pages

Category
Computer Science:
CV and Pattern Recognition