Neural cellular automata: applications to biology and beyond classical AI
By: Benedikt Hartl, Michael Levin, Léo Pio-Lopez
Potential Business Impact:
Computers learn to grow and adapt like living things.
Neural Cellular Automata (NCA) represent a powerful framework for modeling biological self-organization, extending classical rule-based systems with trainable, differentiable (or evolvable) update rules that capture the adaptive self-regulatory dynamics of living matter. By embedding Artificial Neural Networks (ANNs) as local decision-making centers and interaction rules between localized agents, NCA can simulate processes across molecular, cellular, tissue, and system-level scales, offering a multiscale competency architecture perspective on evolution, development, regeneration, aging, morphogenesis, and robotic control. These models not only reproduce biologically inspired target patterns but also generalize to novel conditions, demonstrating robustness to perturbations and the capacity for open-ended adaptation and reasoning. Given their immense success in recent developments, we here review current literature of NCAs that are relevant primarily for biological or bioengineering applications. Moreover, we emphasize that beyond biology, NCAs display robust and generalizing goal-directed dynamics without centralized control, e.g., in controlling or regenerating composite robotic morphologies or even on cutting-edge reasoning tasks such as ARC-AGI-1. In addition, the same principles of iterative state-refinement is reminiscent to modern generative Artificial Intelligence (AI), such as probabilistic diffusion models. Their governing self-regulatory behavior is constraint to fully localized interactions, yet their collective behavior scales into coordinated system-level outcomes. We thus argue that NCAs constitute a unifying computationally lean paradigm that not only bridges fundamental insights from multiscale biology with modern generative AI, but have the potential to design truly bio-inspired collective intelligence capable of hierarchical reasoning and control.
Similar Papers
Neural Cellular Automata for ARC-AGI
Neural and Evolutionary Computing
Teaches computers to solve puzzles like humans.
Identity Increases Stability in Neural Cellular Automata
Neural and Evolutionary Computing
Makes artificial cells grow into stable shapes.
A Rotation-Invariant Embedded Platform for (Neural) Cellular Automata
Neural and Evolutionary Computing
Robots learn to change shape by themselves.