A Comparative Study of YOLOv8 to YOLOv11 Performance in Underwater Vision Tasks
By: Gordon Hung, Ivan Felipe Rodriguez
Potential Business Impact:
Helps underwater robots see fish and coral better.
Autonomous underwater vehicles (AUVs) increasingly rely on on-board computer-vision systems for tasks such as habitat mapping, ecological monitoring, and infrastructure inspection. However, underwater imagery is hindered by light attenuation, turbidity, and severe class imbalance, while the computational resources available on AUVs are limited. One-stage detectors from the YOLO family are attractive because they fuse localization and classification in a single, low-latency network; however, their terrestrial benchmarks (COCO, PASCAL-VOC, Open Images) leave open the question of how successive YOLO releases perform in the marine domain. We curate two openly available datasets that span contrasting operating conditions: a Coral Disease set (4,480 images, 18 classes) and a Fish Species set (7,500 images, 20 classes). For each dataset, we create four training regimes (25 %, 50 %, 75 %, 100 % of the images) while keeping balanced validation and test partitions fixed. We train YOLOv8-s, YOLOv9-s, YOLOv10-s, and YOLOv11-s with identical hyperparameters (100 epochs, 640 px input, batch = 16, T4 GPU) and evaluate precision, recall, mAP50, mAP50-95, per-image inference time, and frames-per-second (FPS). Post-hoc Grad-CAM visualizations probe feature utilization and localization faithfulness. Across both datasets, accuracy saturates after YOLOv9, suggesting architectural innovations primarily target efficiency rather than accuracy. Inference speed, however, improves markedly. Our results (i) provide the first controlled comparison of recent YOLO variants on underwater imagery, (ii) show that lightweight YOLOv10 offers the best speed-accuracy trade-off for embedded AUV deployment, and (iii) deliver an open, reproducible benchmark and codebase to accelerate future marine-vision research.
Similar Papers
An Empirical Study on the Robustness of YOLO Models for Underwater Object Detection
CV and Pattern Recognition
Helps underwater robots see better in murky water.
An AI-Powered Autonomous Underwater System for Sea Exploration and Scientific Research
CV and Pattern Recognition
Robot finds and reports ocean life automatically.
Real-Time Fish Detection in Indonesian Marine Ecosystems Using Lightweight YOLOv10-nano Architecture
CV and Pattern Recognition
Helps scientists count fish underwater faster.