HPIM: Heterogeneous Processing-In-Memory-based Accelerator for Large Language Models Inference
By: Cenlin Duan , Jianlei Yang , Rubing Yang and more
Potential Business Impact:
Makes AI understand words much faster.
The deployment of large language models (LLMs) presents significant challenges due to their enormous memory footprints, low arithmetic intensity, and stringent latency requirements, particularly during the autoregressive decoding stage. Traditional compute-centric accelerators, such as GPUs, suffer from severe resource underutilization and memory bandwidth bottlenecks in these memory-bound workloads. To overcome these fundamental limitations, we propose HPIM, the first memory-centric heterogeneous Processing-In-Memory (PIM) accelerator that integrates SRAM-PIM and HBM-PIM subsystems designed specifically for LLM inference. HPIM employs a software-hardware co-design approach that combines a specialized compiler framework with a heterogeneous hardware architecture. It intelligently partitions workloads based on their characteristics: latency-critical attention operations are mapped to the SRAM-PIM subsystem to exploit its ultra-low latency and high computational flexibility, while weight-intensive GEMV computations are assigned to the HBM-PIM subsystem to leverage its high internal bandwidth and large storage capacity. Furthermore, HPIM introduces a tightly coupled pipeline strategy across SRAM-PIM and HBM-PIM subsystems to maximize intra-token parallelism, thereby significantly mitigating serial dependency of the autoregressive decoding stage. Comprehensive evaluations using a cycle-accurate simulator demonstrate that HPIM significantly outperforms state-of-the-art accelerators, achieving a peak speedup of up to 22.8x compared to the NVIDIA A100 GPU. Moreover, HPIM exhibits superior performance over contemporary PIM-based accelerators, highlighting its potential as a highly practical and scalable solution for accelerating large-scale LLM inference.
Similar Papers
HPIM: Heterogeneous Processing-In-Memory-based Accelerator for Large Language Models Inference
Hardware Architecture
Makes AI models run much faster and use less power.
HH-PIM: Dynamic Optimization of Power and Performance with Heterogeneous-Hybrid PIM for Edge AI Devices
Hardware Architecture
Saves energy for smart devices doing AI.
PIM-LLM: A High-Throughput Hybrid PIM Architecture for 1-bit LLMs
Hardware Architecture
Makes AI chat faster and use less power.