Sublinear-Time Algorithms for Diagonally Dominant Systems and Applications to the Friedkin-Johnsen Model
By: Weiming Feng, Zelin Li, Pan Peng
Potential Business Impact:
Find answers to math problems faster.
We study sublinear-time algorithms for solving linear systems $Sz = b$, where $S$ is a diagonally dominant matrix, i.e., $|S_{ii}| \geq \delta + \sum_{j \ne i} |S_{ij}|$ for all $i \in [n]$, for some $\delta \geq 0$. We present randomized algorithms that, for any $u \in [n]$, return an estimate $z_u$ of $z^*_u$ with additive error $\varepsilon$ or $\varepsilon \lVert z^*\rVert_\infty$, where $z^*$ is some solution to $Sz^* = b$, and the algorithm only needs to read a small portion of the input $S$ and $b$. For example, when the additive error is $\varepsilon$ and assuming $\delta>0$, we give an algorithm that runs in time $O\left( \frac{\|b\|_\infty^2 S_{\max}}{\delta^3 \varepsilon^2} \log \frac{\| b \|_\infty}{\delta \varepsilon} \right)$, where $S_{\max} = \max_{i \in [n]} |S_{ii}|$. We also prove a matching lower bound, showing that the linear dependence on $S_{\max}$ is optimal. Unlike previous sublinear-time algorithms, which apply only to symmetric diagonally dominant matrices with non-negative diagonal entries, our algorithm works for general strictly diagonally dominant matrices ($\delta > 0$) and a broader class of non-strictly diagonally dominant matrices $(\delta = 0)$. Our approach is based on analyzing a simple probabilistic recurrence satisfied by the solution. As an application, we obtain an improved sublinear-time algorithm for opinion estimation in the Friedkin--Johnsen model.
Similar Papers
Entrywise Approximate Solutions for SDDM Systems in Almost-Linear Time
Data Structures and Algorithms
Solves hard math problems much faster for computers.
On Solving Asymmetric Diagonally Dominant Linear Systems in Sublinear Time
Data Structures and Algorithms
Solves complex math problems faster than before.
Entrywise Approximate Matrix Inversion
Data Structures and Algorithms
Makes computers solve hard math problems faster.