Efficiently learning depth-3 circuits via quantum agnostic boosting
By: Srinivasan Arunachalam , Arkopal Dutt , Alexandru Gheorghiu and more
Potential Business Impact:
Teaches computers to guess hidden patterns from data.
We initiate the study of quantum agnostic learning of phase states with respect to a function class $\mathsf{C}\subseteq \{c:\{0,1\}^n\rightarrow \{0,1\}\}$: given copies of an unknown $n$-qubit state $|\psi\rangle$ which has fidelity $\textsf{opt}$ with a phase state $|\phi_c\rangle=\frac{1}{\sqrt{2^n}}\sum_{x\in \{0,1\}^n}(-1)^{c(x)}|x\rangle$ for some $c\in \mathsf{C}$, output $|\phi\rangle$ which has fidelity $|\langle \phi | \psi \rangle|^2 \geq \textsf{opt}-\varepsilon$. To this end, we give agnostic learning protocols for the following classes: (i) Size-$t$ decision trees which runs in time $\textsf{poly}(n,t,1/\varepsilon)$. This also implies $k$-juntas can be agnostically learned in time $\textsf{poly}(n,2^k,1/\varepsilon)$. (ii) $s$-term DNF formulas in time $\textsf{poly}(n,(s/\varepsilon)^{\log \log (s/\varepsilon) \cdot \log(1/\varepsilon)})$. Our main technical contribution is a quantum agnostic boosting protocol which converts a weak agnostic learner, which outputs a parity state $|\phi\rangle$ such that $|\langle \phi|\psi\rangle|^2\geq \textsf{opt}/\textsf{poly}(n)$, into a strong learner which outputs a superposition of parity states $|\phi'\rangle$ such that $|\langle \phi'|\psi\rangle|^2\geq \textsf{opt} - \varepsilon$. Using quantum agnostic boosting, we obtain a $n^{O(\log \log n \cdot \log(1/\varepsilon))}$-time algorithm for learning $\textsf{poly}(n)$-sized depth-$3$ circuits (consisting of $\textsf{AND}$, $\textsf{OR}$, $\textsf{NOT}$ gates) in the uniform $\textsf{PAC}$ model given quantum examples, which is near-polynomial time for constant $\varepsilon$. Classically, obtaining an algorithm with a similar complexity has been an open question in the $\textsf{PAC}$ model and our work answers this given quantum examples.
Similar Papers
Efficiently learning depth-3 circuits via quantum agnostic boosting
Quantum Physics
Teaches computers to learn patterns from quantum data.
Faster Algorithms for Agnostically Learning Disjunctions and their Implications
Machine Learning (CS)
Makes computers learn patterns much faster.
Learning stabilizer structure of quantum states
Quantum Physics
Helps quantum computers understand complex states.