Score: 1

AIP: Subverting Retrieval-Augmented Generation via Adversarial Instructional Prompt

Published: September 18, 2025 | arXiv ID: 2509.15159v1

By: Saket S. Chaturvedi , Gaurav Bagwe , Lan Zhang and more

Potential Business Impact:

Makes AI give wrong answers using fake instructions.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources to improve factual accuracy and verifiability. However, this reliance introduces new attack surfaces within the retrieval pipeline, beyond the LLM itself. While prior RAG attacks have exposed such vulnerabilities, they largely rely on manipulating user queries, which is often infeasible in practice due to fixed or protected user inputs. This narrow focus overlooks a more realistic and stealthy vector: instructional prompts, which are widely reused, publicly shared, and rarely audited. Their implicit trust makes them a compelling target for adversaries to manipulate RAG behavior covertly. We introduce a novel attack for Adversarial Instructional Prompt (AIP) that exploits adversarial instructional prompts to manipulate RAG outputs by subtly altering retrieval behavior. By shifting the attack surface to the instructional prompts, AIP reveals how trusted yet seemingly benign interface components can be weaponized to degrade system integrity. The attack is crafted to achieve three goals: (1) naturalness, to evade user detection; (2) utility, to encourage use of prompts; and (3) robustness, to remain effective across diverse query variations. We propose a diverse query generation strategy that simulates realistic linguistic variation in user queries, enabling the discovery of prompts that generalize across paraphrases and rephrasings. Building on this, a genetic algorithm-based joint optimization is developed to evolve adversarial prompts by balancing attack success, clean-task utility, and stealthiness. Experimental results show that AIP achieves up to 95.23% ASR while preserving benign functionality. These findings uncover a critical and previously overlooked vulnerability in RAG systems, emphasizing the need to reassess the shared instructional prompts.

Country of Origin
🇺🇸 United States

Repos / Data Links

Page Count
18 pages

Category
Computer Science:
CV and Pattern Recognition