Score: 0

Joint Learning of Panel VAR models with Low Rank and Sparse Structure

Published: September 18, 2025 | arXiv ID: 2509.15402v1

By: Yuchen Xu, George Michailidis

Potential Business Impact:

Finds hidden patterns in many groups of data.

Business Areas:
A/B Testing Data and Analytics

Panel vector auto-regressive (VAR) models are widely used to capture the dynamics of multivariate time series across different subpopulations, where each subpopulation shares a common set of variables. In this work, we propose a panel VAR model with a shared low-rank structure, modulated by subpopulation-specific weights, and complemented by idiosyncratic sparse components. To ensure parameter identifiability, we impose structural constraints that lead to a nonsmooth, nonconvex optimization problem. We develop a multi-block Alternating Direction Method of Multipliers (ADMM) algorithm for parameter estimation and establish its convergence under mild regularity conditions. Furthermore, we derive consistency guarantees for the proposed estimators under high-dimensional scaling. The effectiveness of the proposed modeling framework and estimators is demonstrated through experiments on both synthetic data and a real-world neuroscience data set.

Country of Origin
🇺🇸 United States

Page Count
46 pages

Category
Statistics:
Methodology