Score: 0

Training Variational Quantum Circuits Using Particle Swarm Optimization

Published: September 19, 2025 | arXiv ID: 2509.15726v1

By: Marco Mordacci, Michele Amoretti

Potential Business Impact:

Trains quantum computers to learn better.

Business Areas:
Quantum Computing Science and Engineering

In this work, the Particle Swarm Optimization (PSO) algorithm has been used to train various Variational Quantum Circuits (VQCs). This approach is motivated by the fact that commonly used gradient-based optimization methods can suffer from the barren plateaus problem. PSO is a stochastic optimization technique inspired by the collective behavior of a swarm of birds. The dimension of the swarm, the number of iterations of the algorithm, and the number of trainable parameters can be set. In this study, PSO has been used to train the entire structure of VQCs, allowing it to select which quantum gates to apply, the target qubits, and the rotation angle, in case a rotation is chosen. The algorithm is restricted to choosing from four types of gates: Rx, Ry, Rz, and CNOT. The proposed optimization approach has been tested on various datasets of the MedMNIST, which is a collection of biomedical image datasets designed for image classification tasks. Performance has been compared with the results achieved by classical stochastic gradient descent applied to a predefined VQC. The results show that the PSO can achieve comparable or even better classification accuracy across multiple datasets, despite the PSO using a lower number of quantum gates than the VQC used with gradient descent optimization.

Country of Origin
🇮🇹 Italy

Page Count
4 pages

Category
Physics:
Quantum Physics