All-Electric Heavy-Duty Robotic Manipulator: Actuator Configuration Optimization and Sensorless Control
By: Mohammad Bahari , Amir Hossein Barjini , Pauli Mustalahti and more
Potential Business Impact:
Makes robots move precisely without extra sensors.
This paper presents a unified framework that integrates modeling, optimization, and sensorless control of an all-electric heavy-duty robotic manipulator (HDRM) driven by electromechanical linear actuators (EMLAs). An EMLA model is formulated to capture motor electromechanics and direction-dependent transmission efficiencies, while a mathematical model of the HDRM, incorporating both kinematics and dynamics, is established to generate joint-space motion profiles for prescribed TCP trajectories. A safety-ensured trajectory generator, tailored to this model, maps Cartesian goals to joint space while enforcing joint-limit and velocity margins. Based on the resulting force and velocity demands, a multi-objective Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to select the optimal EMLA configuration. To accelerate this optimization, a deep neural network, trained with EMLA parameters, is embedded in the optimization process to predict steady-state actuator efficiency from trajectory profiles. For the chosen EMLA design, a physics-informed Kriging surrogate, anchored to the analytic model and refined with experimental data, learns residuals of EMLA outputs to support force and velocity sensorless control. The actuator model is further embedded in a hierarchical virtual decomposition control (VDC) framework that outputs voltage commands. Experimental validation on a one-degree-of-freedom EMLA testbed confirms accurate trajectory tracking and effective sensorless control under varying loads.
Similar Papers
Surrogate-Enhanced Modeling and Adaptive Modular Control of All-Electric Heavy-Duty Robotic Manipulators
Robotics
Makes big robots move precisely and safely.
Autonomous Control of Redundant Hydraulic Manipulator Using Reinforcement Learning with Action Feedback
Robotics
Robots learn to move precisely with less information.
Full-Dynamics Real-Time Nonlinear Model Predictive Control of Heavy-Duty Hydraulic Manipulator for Trajectory Tracking Tasks
Robotics
Keeps big robot arms safe and on track.