Benchmarking and Mitigating MCQA Selection Bias of Large Vision-Language Models
By: Md. Atabuzzaman, Ali Asgarov, Chris Thomas
Potential Business Impact:
Fixes AI's tendency to pick wrong answers.
Large Vision-Language Models (LVLMs) have achieved strong performance on vision-language tasks, particularly Visual Question Answering (VQA). While prior work has explored unimodal biases in VQA, the problem of selection bias in Multiple-Choice Question Answering (MCQA), where models may favor specific option tokens (e.g., "A") or positions, remains underexplored. In this paper, we investigate both the presence and nature of selection bias in LVLMs through fine-grained MCQA benchmarks spanning easy, medium, and hard difficulty levels, defined by the semantic similarity of the options. We further propose an inference-time logit-level debiasing method that estimates an ensemble bias vector from general and contextual prompts and applies confidence-adaptive corrections to the model's output. Our method mitigates bias without retraining and is compatible with frozen LVLMs. Extensive experiments across several state-of-the-art models reveal consistent selection biases that intensify with task difficulty, and show that our mitigation approach significantly reduces bias while improving accuracy in challenging settings. This work offers new insights into the limitations of LVLMs in MCQA and presents a practical approach to improve their robustness in fine-grained visual reasoning. Datasets and code are available at: https://github.com/Atabuzzaman/Selection-Bias-of-LVLMs
Similar Papers
Quantifying and Mitigating Selection Bias in LLMs: A Transferable LoRA Fine-Tuning and Efficient Majority Voting Approach
Computation and Language
Makes AI answer questions more fairly.
Unexplored flaws in multiple-choice VQA evaluations
CV and Pattern Recognition
Makes AI answers change just by changing the question's words.
Bias in the Picture: Benchmarking VLMs with Social-Cue News Images and LLM-as-Judge Assessment
CV and Pattern Recognition
Finds and fixes unfairness in AI that sees and reads.