Score: 0

Compressed Permutation Oracles

Published: September 23, 2025 | arXiv ID: 2509.18586v1

By: Joseph Carolan

Potential Business Impact:

Makes secret codes harder for future computers.

Business Areas:
Quantum Computing Science and Engineering

The analysis of quantum algorithms which query random, invertible permutations has been a long-standing challenge in cryptography. Many techniques which apply to random oracles fail, or are not known to generalize to this setting. As a result, foundational cryptographic constructions involving permutations often lack quantum security proofs. With the aim of closing this gap, we develop and prove soundness of a compressed permutation oracle. Our construction shares many of the attractive features of Zhandry's original compressed function oracle: the purification is a small list of input-output pairs which meaningfully reflect an algorithm's knowledge of the oracle. We then apply this framework to show that the Feistel construction with seven rounds is a strong quantum PRP, resolving an open question of (Zhandry, 2012). We further re-prove essentially all known quantum query lower bounds in the random permutation model, notably the collision and preimage resistance of both Sponge and Davies-Meyer, hardness of double-sided zero search and sparse predicate search, and give new lower bounds for cycle finding and the one-more problem.

Page Count
80 pages

Category
Physics:
Quantum Physics