Score: 0

Investigating Traffic Accident Detection Using Multimodal Large Language Models

Published: September 23, 2025 | arXiv ID: 2509.19096v2

By: Ilhan Skender , Kailin Tong , Selim Solmaz and more

Potential Business Impact:

Finds car crashes from camera pictures.

Business Areas:
Image Recognition Data and Analytics, Software

Traffic safety remains a critical global concern, with timely and accurate accident detection essential for hazard reduction and rapid emergency response. Infrastructure-based vision sensors offer scalable and efficient solutions for continuous real-time monitoring, facilitating automated detection of accidents directly from captured images. This research investigates the zero-shot capabilities of multimodal large language models (MLLMs) for detecting and describing traffic accidents using images from infrastructure cameras, thus minimizing reliance on extensive labeled datasets. Main contributions include: (1) Evaluation of MLLMs using the simulated DeepAccident dataset from CARLA, explicitly addressing the scarcity of diverse, realistic, infrastructure-based accident data through controlled simulations; (2) Comparative performance analysis between Gemini 1.5 and 2.0, Gemma 3 and Pixtral models in accident identification and descriptive capabilities without prior fine-tuning; and (3) Integration of advanced visual analytics, specifically YOLO for object detection, Deep SORT for multi-object tracking, and Segment Anything (SAM) for instance segmentation, into enhanced prompts to improve model accuracy and explainability. Key numerical results show Pixtral as the top performer with an F1-score of 0.71 and 83% recall, while Gemini models gained precision with enhanced prompts (e.g., Gemini 1.5 rose to 90%) but suffered notable F1 and recall losses. Gemma 3 offered the most balanced performance with minimal metric fluctuation. These findings demonstrate the substantial potential of integrating MLLMs with advanced visual analytics techniques, enhancing their applicability in real-world automated traffic monitoring systems.

Country of Origin
🇦🇹 Austria

Page Count
8 pages

Category
Computer Science:
CV and Pattern Recognition