Score: 0

TraitSpaces: Towards Interpretable Visual Creativity for Human-AI Co-Creation

Published: September 29, 2025 | arXiv ID: 2509.24326v1

By: Prerna Luthra

Potential Business Impact:

Helps AI understand and create art like people.

Business Areas:
Art Media and Entertainment

We introduce a psychologically grounded and artist-informed framework for modeling visual creativity across four domains: Inner, Outer, Imaginative, and Moral Worlds. Drawing on interviews with practicing artists and theories from psychology, we define 12 traits that capture affective, symbolic, cultural, and ethical dimensions of creativity.Using 20k artworks from the SemArt dataset, we annotate images with GPT 4.1 using detailed, theory-aligned prompts, and evaluate the learnability of these traits from CLIP image embeddings. Traits such as Environmental Dialogicity and Redemptive Arc are predicted with high reliability ($R^2 \approx 0.64 - 0.68$), while others like Memory Imprint remain challenging, highlighting the limits of purely visual encoding. Beyond technical metrics, we visualize a "creativity trait-space" and illustrate how it can support interpretable, trait-aware co-creation - e.g., sliding along a Redemptive Arc axis to explore works of adversity and renewal. By linking cultural-aesthetic insights with computational modeling, our work aims not to reduce creativity to numbers, but to offer shared language and interpretable tools for artists, researchers, and AI systems to collaborate meaningfully.

Country of Origin
🇺🇸 United States

Page Count
11 pages

Category
Computer Science:
Human-Computer Interaction