Heterogeneous Multi-agent Collaboration in UAV-assisted Mobile Crowdsensing Networks
By: Xianyang Deng , Wenshuai Liu , Yaru FuB and more
Potential Business Impact:
Drones collect more data by planning better.
Unmanned aerial vehicles (UAVs)-assisted mobile crowdsensing (MCS) has emerged as a promising paradigm for data collection. However, challenges such as spectrum scarcity, device heterogeneity, and user mobility hinder efficient coordination of sensing, communication, and computation. To tackle these issues, we propose a joint optimization framework that integrates time slot partition for sensing, communication, and computation phases, resource allocation, and UAV 3D trajectory planning, aiming to maximize the amount of processed sensing data. The problem is formulated as a non-convex stochastic optimization and further modeled as a partially observable Markov decision process (POMDP) that can be solved by multi-agent deep reinforcement learning (MADRL) algorithm. To overcome the limitations of conventional multi-layer perceptron (MLP) networks, we design a novel MADRL algorithm with hybrid actor network. The newly developed method is based on heterogeneous agent proximal policy optimization (HAPPO), empowered by convolutional neural networks (CNN) for feature extraction and Kolmogorov-Arnold networks (KAN) to capture structured state-action dependencies. Extensive numerical results demonstrate that our proposed method achieves significant improvements in the amount of processed sensing data when compared with other benchmarks.
Similar Papers
Energy Efficient Task Offloading in UAV-Enabled MEC Using a Fully Decentralized Deep Reinforcement Learning Approach
Multiagent Systems
Drones fly smarter by talking to neighbors.
Real-Time Navigation for Autonomous Aerial Vehicles Using Video
Robotics
Drones navigate faster and use less power.
Two-Timescale Optimization Framework for IAB-Enabled Heterogeneous UAV Networks
Systems and Control
Drones create better phone signals after disasters.