Score: 2

ElasWave: An Elastic-Native System for Scalable Hybrid-Parallel Training

Published: October 1, 2025 | arXiv ID: 2510.00606v2

By: Xueze Kang , Guangyu Xiang , Yuxin Wang and more

BigTech Affiliations: Huawei

Potential Business Impact:

Keeps big AI models training when computers break.

Business Areas:
A/B Testing Data and Analytics

Large-scale LLM pretraining now runs across $10^5$--$10^6$ accelerators, making failures routine and elasticity mandatory. We posit that an elastic-native training system must jointly deliver (i) parameter consistency, (ii) low mean time to recovery (MTTR), (iii) high post-change throughput, and (iv) computation consistency. No prior system achieves all four simultaneously. To achieve these goals, we present ElasWave, which delivers per-step fault tolerance via multi-dimensional scheduling across graph, dataflow, DVFS, and RNG. ElasWave reshapes and reshards micro-batches while preserving the global batch size and gradient scale. It performs online pipeline resharding with asynchronous parameter migration and interleaves ZeRO partitions, reducing parameter recovery processes to disjoint rank-to-rank transfers. It further leverages DVFS to absorb pipeline bubbles and reshards RNG to keep computation consistency. Together, a dynamic communicator enables in-place communication group edits, while per-step in-memory snapshots support online verification and redistribution. We evaluate ElasWave on 96 NPUs and benchmark it against state-of-the-art baselines: throughput improves by $1.35\times$ over ReCycle and $1.60\times$ over TorchFT; communicator recovery completes within one second (up to $82\times/3.6\times$ faster than full/partial rebuilds); migration MTTR drops by as much as $51\%$; and convergence deviation is reduced by approximately $78\%$.

Country of Origin
🇨🇳 China

Page Count
16 pages

Category
Computer Science:
Distributed, Parallel, and Cluster Computing