Score: 0

Measurement-Guided Consistency Model Sampling for Inverse Problems

Published: October 2, 2025 | arXiv ID: 2510.02208v1

By: Amirreza Tanevardi, Pooria Abbas Rad Moghadam, Sajjad Amini

Potential Business Impact:

Makes blurry pictures clear, super fast.

Business Areas:
A/B Testing Data and Analytics

Diffusion models have become powerful generative priors for solving inverse imaging problems, but their reliance on slow multi-step sampling limits practical deployment. Consistency models address this bottleneck by enabling high-quality generation in a single or only a few steps, yet their direct adaptation to inverse problems is underexplored. In this paper, we present a modified consistency sampling approach tailored for inverse problem reconstruction: the sampler's stochasticity is guided by a measurement-consistency mechanism tied to the measurement operator, which enforces fidelity to the acquired measurements while retaining the efficiency of consistency-based generation. Experiments on Fashion-MNIST and LSUN Bedroom datasets demonstrate consistent improvements in perceptual and pixel-level metrics, including Fr\'echet Inception Distance, Kernel Inception Distance, peak signal-to-noise ratio, and structural similarity index measure, compared to baseline consistency sampling, yielding competitive or superior reconstructions with only a handful of steps.

Page Count
5 pages

Category
Electrical Engineering and Systems Science:
Image and Video Processing