Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
By: Mario Medrano-Paredes , Carmen Fernández-González , Francisco-Javier Díaz-Pernas and more
Potential Business Impact:
Lets cameras track body movements like doctors do.
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
Similar Papers
Deep Inertial Pose: A deep learning approach for human pose estimation
CV and Pattern Recognition
Lets computers track body movements without expensive gear.
MobilePoser: Real-Time Full-Body Pose Estimation and 3D Human Translation from IMUs in Mobile Consumer Devices
Human-Computer Interaction
Tracks your whole body's movement with your phone.
A Tightly Coupled IMU-Based Motion Capture Approach for Estimating Multibody Kinematics and Kinetics
Robotics
Tracks body movement more accurately without cameras.