Retrv-R1: A Reasoning-Driven MLLM Framework for Universal and Efficient Multimodal Retrieval
By: Lanyun Zhu , Deyi Ji , Tianrun Chen and more
Potential Business Impact:
Helps computers find information better and faster.
The success of DeepSeek-R1 demonstrates the immense potential of using reinforcement learning (RL) to enhance LLMs' reasoning capabilities. This paper introduces Retrv-R1, the first R1-style MLLM specifically designed for multimodal universal retrieval, achieving higher performance by employing step-by-step reasoning to produce more accurate retrieval results. We find that directly applying the methods of DeepSeek-R1 to retrieval tasks is not feasible, mainly due to (1) the high computational cost caused by the large token consumption required for multiple candidates with reasoning processes, and (2) the instability and suboptimal results when directly applying RL to train for retrieval tasks. To address these issues, Retrv-R1 introduces an information compression module with a details inspection mechanism, which enhances computational efficiency by reducing the number of tokens while ensuring that critical information for challenging candidates is preserved. Furthermore, a new training paradigm is proposed, including an activation stage using a retrieval-tailored synthetic CoT dataset for more effective optimization, followed by RL with a novel curriculum reward to improve both performance and efficiency. Incorporating these novel designs, Retrv-R1 achieves SOTA performance, high efficiency, and strong generalization ability, as demonstrated by experiments across multiple benchmarks and tasks.
Similar Papers
DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning
Information Retrieval
Finds information much better, even with small AI.
R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Artificial Intelligence
Lets computers find answers on the internet.
Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Computation and Language
Helps computers find better answers online.