DH-EAC: Design of a Dynamic, Hierarchical Entanglement Access Control Protocol
By: Akihisa Takahashi, Yoshito Tobe
Potential Business Impact:
Shares quantum links fairly between many computers.
We propose Dynamic, Hierarchical Entanglement Access Control (DH-EAC), a pure-quantum protocol for fair and anonymous allocation of scarce entanglement across wide-area quantum networks composed of many quantum LANs (QLANs). Prior Dicke-state-based pure-quantum MACs resolve contention by local measurements without classical signaling, but they mainly target a single QLAN under static conditions; extending them to wide-area, dynamic settings while avoiding post-selection reconciliation remains open. DH-EAC adopts a two-layer pure-quantum lottery: the outer layer selects winning QLANs and the inner layer selects winning nodes within each winning QLAN. A key design principle is that both the winning set and the per-QLAN quota are fixed by measurements alone, so the contention loop requires no classical round trip. The protocol thus aims to jointly satisfy anonymity (no node IDs revealed until decisions are fixed) and fairness (bias suppression under heterogeneous QLAN sizes). We also provide analytical models for success probability and latency under a standard i.i.d. loss model, and we evaluate DH-EAC against two baselines - single-layer Dicke within one QLAN and a classical GO-driven allocator - using a minimal, reproducible set of scenarios. Metrics include success probability, end-to-end latency, throughput, and Jain's fairness index. The results indicate that DH-EAC offers an implementable design point in the space of entanglement access control, balancing pure-quantum contention resolution, anonymity, and scalability for multi-QLAN networks.
Similar Papers
HARQ-based Quantized Average Consensus over Unreliable Directed Network Topologies
Systems and Control
Helps computers agree on a number, even with lost messages.
Distribution and Purification of Entanglement States in Quantum Networks
Quantum Physics
Makes quantum internet connections super strong.
Towards A High-Performance Quantum Data Center Network Architecture
Quantum Physics
Connects many small quantum computers for big tasks.