Score: 0

Fairness in Repeated Matching: A Maximin Perspective

Published: October 6, 2025 | arXiv ID: 2510.04624v1

By: Eugene Lim, Tzeh Yuan Neoh, Nicholas Teh

Potential Business Impact:

Finds fairest ways to share things over time.

Business Areas:
A/B Testing Data and Analytics

We study a sequential decision-making model where a set of items is repeatedly matched to the same set of agents over multiple rounds. The objective is to determine a sequence of matchings that either maximizes the utility of the least advantaged agent at the end of all rounds (optimal) or at the end of every individual round (anytime optimal). We investigate the computational challenges associated with finding (anytime) optimal outcomes and demonstrate that these problems are generally computationally intractable. However, we provide approximation algorithms, fixed-parameter tractable algorithms, and identify several special cases whereby the problem(s) can be solved efficiently. Along the way, we also establish characterizations of Pareto-optimal/maximum matchings, which may be of independent interest to works in matching theory and house allocation.

Page Count
38 pages

Category
Computer Science:
CS and Game Theory