AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
By: Khalid Mehtab Khan, Anagha Kulkarni
Potential Business Impact:
Helps computers understand hidden meanings in student writing.
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
Similar Papers
Identity-Aware Large Language Models require Cultural Reasoning
Computation and Language
Helps AI understand and respect different cultures.
CATCH: A Controllable Theme Detection Framework with Contextualized Clustering and Hierarchical Generation
Computation and Language
Helps chatbots understand what you're talking about.
CURE: Cultural Understanding and Reasoning Evaluation - A Framework for "Thick" Culture Alignment Evaluation in LLMs
Computation and Language
Teaches computers to understand different cultures.