Distributional Semantics Tracing: A Framework for Explaining Hallucinations in Large Language Models
By: Gagan Bhatia , Somayajulu G Sripada , Kevin Allan and more
Potential Business Impact:
Finds why AI makes up fake facts.
Large Language Models (LLMs) are prone to hallucination, the generation of plausible yet factually incorrect statements. This work investigates the intrinsic, architectural origins of this failure mode through three primary contributions. First, to enable the reliable tracing of internal semantic failures, we propose Distributional Semantics Tracing (DST), a unified framework that integrates established interpretability techniques to produce a causal map of a model's reasoning, treating meaning as a function of context (distributional semantics). Second, we pinpoint the model's layer at which a hallucination becomes inevitable, identifying a specific commitment layer where a model's internal representations irreversibly diverge from factuality. Third, we identify the underlying mechanism for these failures. We observe a conflict between distinct computational pathways, which we interpret using the lens of dual-process theory: a fast, heuristic associative pathway (akin to System 1) and a slow, deliberate, contextual pathway (akin to System 2), leading to predictable failure modes such as Reasoning Shortcut Hijacks. Our framework's ability to quantify the coherence of the contextual pathway reveals a strong negative correlation ($\rho = -0.863$) with hallucination rates, implying that these failures are predictable consequences of internal semantic weakness. The result is a mechanistic account of how, when, and why hallucinations occur within the Transformer architecture.
Similar Papers
Distributional Semantics Tracing: A Framework for Explaining Hallucinations in Large Language Models
Computation and Language
Finds why AI makes up fake facts.
Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
Machine Learning (CS)
Makes AI tell the truth, not make things up.
The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Computation and Language
Stops AI from making up false information.