Demystifying Deep Learning-based Brain Tumor Segmentation with 3D UNets and Explainable AI (XAI): A Comparative Analysis
By: Ming Jie Ong , Sze Yinn Ung , Sim Kuan Goh and more
Potential Business Impact:
Helps doctors find brain tumors faster and better.
The current study investigated the use of Explainable Artificial Intelligence (XAI) to improve the accuracy of brain tumor segmentation in MRI images, with the goal of assisting physicians in clinical decision-making. The study focused on applying UNet models for brain tumor segmentation and using the XAI techniques of Gradient-weighted Class Activation Mapping (Grad-CAM) and attention-based visualization to enhance the understanding of these models. Three deep learning models - UNet, Residual UNet (ResUNet), and Attention UNet (AttUNet) - were evaluated to identify the best-performing model. XAI was employed with the aims of clarifying model decisions and increasing physicians' trust in these models. We compared the performance of two UNet variants (ResUNet and AttUNet) with the conventional UNet in segmenting brain tumors from the BraTS2020 public dataset and analyzed model predictions with Grad-CAM and attention-based visualization. Using the latest computer hardware, we trained and validated each model using the Adam optimizer and assessed their performance with respect to: (i) training, validation, and inference times, (ii) segmentation similarity coefficients and loss functions, and (iii) classification performance. Notably, during the final testing phase, ResUNet outperformed the other models with respect to Dice and Jaccard similarity scores, as well as accuracy, recall, and F1 scores. Grad-CAM provided visuospatial insights into the tumor subregions each UNet model focused on while attention-based visualization provided valuable insights into the working mechanisms of AttUNet's attention modules. These results demonstrated ResUNet as the best-performing model and we conclude by recommending its use for automated brain tumor segmentation in future clinical assessments. Our source code and checkpoint are available at https://github.com/ethanong98/MultiModel-XAI-Brats2020
Similar Papers
Advancing Brain Tumor Segmentation via Attention-based 3D U-Net Architecture and Digital Image Processing
CV and Pattern Recognition
Helps doctors find brain tumors better.
Fusion-Based Brain Tumor Classification Using Deep Learning and Explainable AI, and Rule-Based Reasoning
Image and Video Processing
Helps doctors find brain tumors faster and safer.
Enhancing Neuro-Oncology Through Self-Assessing Deep Learning Models for Brain Tumor Unified Model for MRI Segmentation
CV and Pattern Recognition
Shows doctors how sure AI is about brain tumors.