FATHOMS-RAG: A Framework for the Assessment of Thinking and Observation in Multimodal Systems that use Retrieval Augmented Generation
By: Samuel Hildebrand , Curtis Taylor , Sean Oesch and more
Potential Business Impact:
Helps computers answer questions using text, pictures, and tables.
Retrieval-augmented generation (RAG) has emerged as a promising paradigm for improving factual accuracy in large language models (LLMs). We introduce a benchmark designed to evaluate RAG pipelines as a whole, evaluating a pipeline's ability to ingest, retrieve, and reason about several modalities of information, differentiating it from existing benchmarks that focus on particular aspects such as retrieval. We present (1) a small, human-created dataset of 93 questions designed to evaluate a pipeline's ability to ingest textual data, tables, images, and data spread across these modalities in one or more documents; (2) a phrase-level recall metric for correctness; (3) a nearest-neighbor embedding classifier to identify potential pipeline hallucinations; (4) a comparative evaluation of 2 pipelines built with open-source retrieval mechanisms and 4 closed-source foundation models; and (5) a third-party human evaluation of the alignment of our correctness and hallucination metrics. We find that closed-source pipelines significantly outperform open-source pipelines in both correctness and hallucination metrics, with wider performance gaps in questions relying on multimodal and cross-document information. Human evaluation of our metrics showed average agreement of 4.62 for correctness and 4.53 for hallucination detection on a 1-5 Likert scale (5 indicating "strongly agree").
Similar Papers
A Systematic Review of Key Retrieval-Augmented Generation (RAG) Systems: Progress, Gaps, and Future Directions
Computation and Language
Makes AI answers more truthful and up-to-date.
Towards a rigorous evaluation of RAG systems: the challenge of due diligence
Artificial Intelligence
Makes AI give more trustworthy answers for important jobs.
Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers
Information Retrieval
Helps computers answer questions with real-world facts.