Regret Bounds for Adversarial Contextual Bandits with General Function Approximation and Delayed Feedback
By: Orin Levy , Liad Erez , Alon Cohen and more
Potential Business Impact:
Helps computers learn from delayed information.
We present regret minimization algorithms for the contextual multi-armed bandit (CMAB) problem over $K$ actions in the presence of delayed feedback, a scenario where loss observations arrive with delays chosen by an adversary. As a preliminary result, assuming direct access to a finite policy class $\Pi$ we establish an optimal expected regret bound of $ O (\sqrt{KT \log |\Pi|} + \sqrt{D \log |\Pi|)} $ where $D$ is the sum of delays. For our main contribution, we study the general function approximation setting over a (possibly infinite) contextual loss function class $ \mathcal{F} $ with access to an online least-square regression oracle $\mathcal{O}$ over $\mathcal{F}$. In this setting, we achieve an expected regret bound of $O(\sqrt{KT\mathcal{R}_T(\mathcal{O})} + \sqrt{ d_{\max} D \beta})$ assuming FIFO order, where $d_{\max}$ is the maximal delay, $\mathcal{R}_T(\mathcal{O})$ is an upper bound on the oracle's regret and $\beta$ is a stability parameter associated with the oracle. We complement this general result by presenting a novel stability analysis of a Hedge-based version of Vovk's aggregating forecaster as an oracle implementation for least-square regression over a finite function class $\mathcal{F}$ and show that its stability parameter $\beta$ is bounded by $\log |\mathcal{F}|$, resulting in an expected regret bound of $O(\sqrt{KT \log |\mathcal{F}|} + \sqrt{d_{\max} D \log |\mathcal{F}|})$ which is a $\sqrt{d_{\max}}$ factor away from the lower bound of $\Omega(\sqrt{KT \log |\mathcal{F}|} + \sqrt{D \log |\mathcal{F}|})$ that we also present.
Similar Papers
An Improved Algorithm for Adversarial Linear Contextual Bandits via Reduction
Machine Learning (CS)
Helps computers learn best choices faster.
Online Nonsubmodular Optimization with Delayed Feedback in the Bandit Setting
Machine Learning (CS)
Makes computer learning faster with delayed information.
Generalized Kernelized Bandits: Self-Normalized Bernstein-Like Dimension-Free Inequality and Regret Bounds
Machine Learning (CS)
Helps computers learn faster with tricky data.