Multimodal Prompt Optimization: Why Not Leverage Multiple Modalities for MLLMs
By: Yumin Choi , Dongki Kim , Jinheon Baek and more
Potential Business Impact:
Teaches AI to understand pictures and words together.
Large Language Models (LLMs) have shown remarkable success, and their multimodal expansions (MLLMs) further unlock capabilities spanning images, videos, and other modalities beyond text. However, despite this shift, prompt optimization approaches, designed to reduce the burden of manual prompt crafting while maximizing performance, remain confined to text, ultimately limiting the full potential of MLLMs. Motivated by this gap, we introduce the new problem of multimodal prompt optimization, which expands the prior definition of prompt optimization to the multimodal space defined by the pairs of textual and non-textual prompts. To tackle this problem, we then propose the Multimodal Prompt Optimizer (MPO), a unified framework that not only performs the joint optimization of multimodal prompts through alignment-preserving updates but also guides the selection process of candidate prompts by leveraging earlier evaluations as priors in a Bayesian-based selection strategy. Through extensive experiments across diverse modalities that go beyond text, such as images, videos, and even molecules, we demonstrate that MPO outperforms leading text-only optimization methods, establishing multimodal prompt optimization as a crucial step to realizing the potential of MLLMs.
Similar Papers
The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Artificial Intelligence
Teaches AI to understand pictures and words better.
System Prompt Optimization with Meta-Learning
Computation and Language
Makes AI understand instructions better for any task.
Local Prompt Optimization
Computation and Language
Helps AI write better answers by focusing on key words.