Domain-Adapted Pre-trained Language Models for Implicit Information Extraction in Crash Narratives
By: Xixi Wang , Jordanka Kovaceva , Miguel Costa and more
Potential Business Impact:
Helps cars understand crash details better.
Free-text crash narratives recorded in real-world crash databases have been shown to play a significant role in improving traffic safety. However, large-scale analyses remain difficult to implement as there are no documented tools that can batch process the unstructured, non standardized text content written by various authors with diverse experience and attention to detail. In recent years, Transformer-based pre-trained language models (PLMs), such as Bidirectional Encoder Representations from Transformers (BERT) and large language models (LLMs), have demonstrated strong capabilities across various natural language processing tasks. These models can extract explicit facts from crash narratives, but their performance declines on inference-heavy tasks in, for example, Crash Type identification, which can involve nearly 100 categories. Moreover, relying on closed LLMs through external APIs raises privacy concerns for sensitive crash data. Additionally, these black-box tools often underperform due to limited domain knowledge. Motivated by these challenges, we study whether compact open-source PLMs can support reasoning-intensive extraction from crash narratives. We target two challenging objectives: 1) identifying the Manner of Collision for a crash, and 2) Crash Type for each vehicle involved in the crash event from real-world crash narratives. To bridge domain gaps, we apply fine-tuning techniques to inject task-specific knowledge to LLMs with Low-Rank Adaption (LoRA) and BERT. Experiments on the authoritative real-world dataset Crash Investigation Sampling System (CISS) demonstrate that our fine-tuned compact models outperform strong closed LLMs, such as GPT-4o, while requiring only minimal training resources. Further analysis reveals that the fine-tuned PLMs can capture richer narrative details and even correct some mislabeled annotations in the dataset.
Similar Papers
Improving Crash Data Quality with Large Language Models: Evidence from Secondary Crash Narratives in Kentucky
Computation and Language
Finds hidden car crash causes in police reports.
Domain Adaptation of LLMs for Process Data
Computation and Language
Helps computers predict what happens next in a process.
Improving Narrative Classification and Explanation via Fine Tuned Language Models
Computation and Language
Finds hidden messages and explains them clearly.