Score: 2

Preference-driven Knowledge Distillation for Few-shot Node Classification

Published: October 11, 2025 | arXiv ID: 2510.10116v2

By: Xing Wei , Chunchun Chen , Rui Fan and more

Potential Business Impact:

Helps computers learn from less data.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Graph neural networks (GNNs) can efficiently process text-attributed graphs (TAGs) due to their message-passing mechanisms, but their training heavily relies on the human-annotated labels. Moreover, the complex and diverse local topologies of nodes of real-world TAGs make it challenging for a single mechanism to handle. Large language models (LLMs) perform well in zero-/few-shot learning on TAGs but suffer from a scalability challenge. Therefore, we propose a preference-driven knowledge distillation (PKD) framework to synergize the complementary strengths of LLMs and various GNNs for few-shot node classification. Specifically, we develop a GNN-preference-driven node selector that effectively promotes prediction distillation from LLMs to teacher GNNs. To further tackle nodes' intricate local topologies, we develop a node-preference-driven GNN selector that identifies the most suitable teacher GNN for each node, thereby facilitating tailored knowledge distillation from teacher GNNs to the student GNN. Extensive experiments validate the efficacy of our proposed framework in few-shot node classification on real-world TAGs. Our code is available.

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡ΊπŸ‡Έ China, United States

Repos / Data Links

Page Count
31 pages

Category
Computer Science:
Machine Learning (CS)