Applying non-negative matrix factorization with covariates to label matrix for classification
By: Kenichi Satoh
Potential Business Impact:
Helps computers guess what something is.
Non-negative matrix factorization (NMF) is widely used for dimensionality reduction and interpretable analysis, but standard formulations are unsupervised and cannot directly exploit class labels. Existing supervised or semi-supervised extensions usually incorporate labels only via penalties or graph constraints, still requiring an external classifier. We propose \textit{NMF-LAB} (Non-negative Matrix Factorization for Label Matrix), which redefines classification as the inverse problem of non-negative matrix tri-factorization (tri-NMF). Unlike joint NMF methods, which reconstruct both features and labels, NMF-LAB directly factorizes the label matrix $Y$ as the observation, while covariates $A$ are treated as given explanatory variables. This yields a direct probabilistic mapping from covariates to labels, distinguishing our method from label-matrix factorization approaches that mainly model label correlations or impute missing labels. Our inversion offers two key advantages: (i) class-membership probabilities are obtained directly from the factorization without a separate classifier, and (ii) covariates, including kernel-based similarities, can be seamlessly integrated to generalize predictions to unseen samples. In addition, unlabeled data can be encoded as uniform distributions, supporting semi-supervised learning. Experiments on diverse datasets, from small-scale benchmarks to the large-scale MNIST dataset, demonstrate that NMF-LAB achieves competitive predictive accuracy, robustness to noisy or incomplete labels, and scalability to high-dimensional problems, while preserving interpretability. By unifying regression and classification within the tri-NMF framework, NMF-LAB provides a novel, probabilistic, and scalable approach to modern classification tasks.
Similar Papers
Applying non-negative matrix factorization with covariates to multivariate time series data as a vector autoregression model
Methodology
Finds hidden patterns in changing data.
Nonnegative matrix factorization and the principle of the common cause
Machine Learning (CS)
Finds hidden patterns in pictures, even with noise.
Non-Negative Matrix Factorization Using Non-Von Neumann Computers
Quantum Physics
New computer helps solve hard math problems faster.