Rethinking Agentic Workflows: Evaluating Inference-Based Test-Time Scaling Strategies in Text2SQL Tasks
By: Jiajing Guo , Kenil Patel , Jorge Piazentin Ono and more
Potential Business Impact:
Lets computers answer questions from data.
Large language models (LLMs) are increasingly powering Text-to-SQL (Text2SQL) systems, enabling non-expert users to query industrial databases using natural language. While test-time scaling strategies have shown promise in LLM-based solutions, their effectiveness in real-world applications, especially with the latest reasoning models, remains uncertain. In this work, we benchmark six lightweight, industry-oriented test-time scaling strategies and four LLMs, including two reasoning models, evaluating their performance on the BIRD Mini-Dev benchmark. Beyond standard accuracy metrics, we also report inference latency and token consumption, providing insights relevant for practical system deployment. Our findings reveal that Divide-and-Conquer prompting and few-shot demonstrations consistently enhance performance for both general-purpose and reasoning-focused LLMs. However, introducing additional workflow steps yields mixed results, and base model selection plays a critical role. This work sheds light on the practical trade-offs between accuracy, efficiency, and complexity when deploying Text2SQL systems.
Similar Papers
The Art of Scaling Test-Time Compute for Large Language Models
Computation and Language
Makes AI think better by changing how it works.
End-to-End Text-to-SQL with Dataset Selection: Leveraging LLMs for Adaptive Query Generation
Machine Learning (CS)
Finds the right database for your questions.
End-to-End Text-to-SQL with Dataset Selection: Leveraging LLMs for Adaptive Query Generation
Machine Learning (CS)
Finds the right database for your questions.