Score: 2

APLOT: Robust Reward Modeling via Adaptive Preference Learning with Optimal Transport

Published: October 13, 2025 | arXiv ID: 2510.10963v1

By: Zhuo Li , Yuege Feng , Dandan Guo and more

Potential Business Impact:

Makes AI understand what people like better.

Business Areas:
A/B Testing Data and Analytics

The reward model (RM) plays a crucial role in aligning Large Language Models (LLMs) with human preferences through Reinforcement Learning, where the Bradley-Terry (BT) objective has been recognized as simple yet powerful, specifically for pairwise preference learning. However, BT-based RMs often struggle to effectively distinguish between similar preference responses, leading to insufficient separation between preferred and non-preferred outputs. Consequently, they may easily overfit easy samples and cannot generalize well to Out-Of-Distribution (OOD) samples, resulting in suboptimal performance. To address these challenges, this paper introduces an effective enhancement to BT-based RMs through an adaptive margin mechanism. Specifically, we design to dynamically adjust the RM focus on more challenging samples through margins, based on both semantic similarity and model-predicted reward differences, which is approached from a distributional perspective solvable with Optimal Transport (OT). By incorporating these factors into a principled OT cost matrix design, our adaptive margin enables the RM to better capture distributional differences between chosen and rejected responses, yielding significant improvements in performance, convergence speed, and generalization capabilities. Experimental results across multiple benchmarks demonstrate that our method outperforms several existing RM techniques, showcasing enhanced performance in both In-Distribution (ID) and OOD settings. Moreover, RLHF experiments support our practical effectiveness in better aligning LLMs with human preferences. Our code is available at https://github.com/BIRlz/APLOT

Country of Origin
🇨🇳 China


Page Count
15 pages

Category
Computer Science:
Machine Learning (CS)