Score: 0

CoDefend: Cross-Modal Collaborative Defense via Diffusion Purification and Prompt Optimization

Published: October 13, 2025 | arXiv ID: 2510.11096v1

By: Fengling Zhu , Boshi Liu , Jingyu Hua and more

Potential Business Impact:

Protects AI from fake images and bad advice.

Business Areas:
Water Purification Sustainability

Multimodal Large Language Models (MLLMs) have achieved remarkable success in tasks such as image captioning, visual question answering, and cross-modal reasoning by integrating visual and textual modalities. However, their multimodal nature also exposes them to adversarial threats, where attackers can perturb either modality or both jointly to induce harmful, misleading, or policy violating outputs. Existing defense strategies, such as adversarial training and input purification, face notable limitations: adversarial training typically improves robustness only against known attacks while incurring high computational costs, whereas conventional purification approaches often suffer from degraded image quality and insufficient generalization to complex multimodal tasks. In this work, we focus on defending the visual modality, which frequently serves as the primary entry point for adversarial manipulation. We propose a supervised diffusion based denoising framework that leverages paired adversarial clean image datasets to fine-tune diffusion models with directional, task specific guidance. Unlike prior unsupervised purification methods such as DiffPure, our approach achieves higher quality reconstructions while significantly improving defense robustness in multimodal tasks. Furthermore, we incorporate prompt optimization as a complementary defense mechanism, enhancing resistance against diverse and unseen attack strategies. Extensive experiments on image captioning and visual question answering demonstrate that our method not only substantially improves robustness but also exhibits strong transferability to unknown adversarial attacks. These results highlight the effectiveness of supervised diffusion based denoising for multimodal defense, paving the way for more reliable and secure deployment of MLLMs in real world applications.

Country of Origin
🇨🇳 China

Page Count
11 pages

Category
Computer Science:
CV and Pattern Recognition