Domain-Specific Data Generation Framework for RAG Adaptation
By: Chris Xing Tian , Weihao Xie , Zhen Chen and more
Potential Business Impact:
Helps AI learn from specific books and documents.
Retrieval-Augmented Generation (RAG) combines the language understanding and reasoning power of large language models (LLMs) with external retrieval to enable domain-grounded responses. Effectively adapting RAG systems to domain-specific settings requires specialized, context-rich training data beyond general-purpose question-answering. Here, we propose RAGen, a scalable and modular framework for generating domain-grounded question-answer-context (QAC) triples tailored to diverse RAG adaptation approaches. RAGen produces these QAC triples by identifying key concepts in documents, generating diverse questions guided by Bloom's Taxonomy-inspired principles, and pairing them with precise answers extracted from relevant contexts. RAGen supports multiple RAG adaptation strategies, including the optimization of key components such as the LLM, retriever, and embedding model, etc. Its modular pipeline features semantic chunking, hierarchical concept extraction, and multi-chunk retrieval, along with the introduction of curated distractor contexts to promote robust reasoning. Designed for scalability, RAGen efficiently handles large and evolving document corpora without redundant processing, making it especially suitable for dynamic evolving domains such as scientific research and enterprise knowledge bases.
Similar Papers
A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models
Computation and Language
Helps computers understand complex topics better.
DSRAG: A Domain-Specific Retrieval Framework Based on Document-derived Multimodal Knowledge Graph
Information Retrieval
Helps AI answer questions using pictures and text.
Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers
Information Retrieval
Helps computers answer questions with real-world facts.