When Does Supervised Training Pay Off? The Hidden Economics of Object Detection in the Era of Vision-Language Models
By: Samer Al-Hamadani
Potential Business Impact:
Finds objects without needing labels.
Object detection systems have traditionally relied on supervised learning with manually annotated bounding boxes, achieving high accuracy at the cost of substantial annotation investment. The emergence of Vision-Language Models (VLMs) offers an alternative paradigm enabling zero-shot detection through natural language queries, eliminating annotation requirements but operating with reduced accuracy. This paper presents the first comprehensive cost-effectiveness analysis comparing supervised detection (YOLO) with zero-shot VLM inference (Gemini Flash 2.5). Through systematic evaluation on 1,000 stratified COCO images and 200 diverse product images spanning consumer electronics and rare categories, combined with detailed Total Cost of Ownership modeling, we establish quantitative break-even thresholds governing architecture selection. Our findings reveal that supervised YOLO achieves 91.2% accuracy versus 68.5% for zero-shot Gemini on standard categories, representing a 22.7 percentage point advantage that costs $10,800 in annotation for 100-category systems. However, this advantage justifies investment only beyond 55 million inferences, equivalent to 151,000 images daily for one year. Zero-shot Gemini demonstrates 52.3% accuracy on diverse product categories (ranging from highly web-prevalent consumer electronics at 75-85% to rare specialized equipment at 25-40%) where supervised YOLO achieves 0% due to architectural constraints preventing detection of untrained classes. Cost per Correct Detection analysis reveals substantially lower per-detection costs for Gemini ($0.00050 vs $0.143) at 100,000 inferences despite accuracy deficits. We develop decision frameworks demonstrating that optimal architecture selection depends critically on deployment volume, category stability, budget constraints, and accuracy requirements rather than purely technical performance metrics.
Similar Papers
Robust Object Detection with Pseudo Labels from VLMs using Per-Object Co-teaching
CV and Pattern Recognition
Teaches self-driving cars to see objects faster.
Efficient Few-Shot Learning in Remote Sensing: Fusing Vision and Vision-Language Models
CV and Pattern Recognition
Finds planes in pictures better, even blurry ones.
Zero-shot image privacy classification with Vision-Language Models
CV and Pattern Recognition
Makes computers better at guessing private pictures.