Score: 1

A Flexible Multi-Agent Deep Reinforcement Learning Framework for Dynamic Routing and Scheduling of Latency-Critical Services

Published: October 13, 2025 | arXiv ID: 2510.11535v1

By: Vincenzo Norman Vitale , Antonia Maria Tulino , Andreas F. Molisch and more

Potential Business Impact:

Ensures important messages arrive on time.

Business Areas:
Content Delivery Network Content and Publishing

Timely delivery of delay-sensitive information over dynamic, heterogeneous networks is increasingly essential for a range of interactive applications, such as industrial automation, self-driving vehicles, and augmented reality. However, most existing network control solutions target only average delay performance, falling short of providing strict End-to-End (E2E) peak latency guarantees. This paper addresses the challenge of reliably delivering packets within application-imposed deadlines by leveraging recent advancements in Multi-Agent Deep Reinforcement Learning (MA-DRL). After introducing the Delay-Constrained Maximum-Throughput (DCMT) dynamic network control problem, and highlighting the limitations of current solutions, we present a novel MA-DRL network control framework that leverages a centralized routing and distributed scheduling architecture. The proposed framework leverages critical networking domain knowledge for the design of effective MA-DRL strategies based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) technique, where centralized routing and distributed scheduling agents dynamically assign paths and schedule packet transmissions according to packet lifetimes, thereby maximizing on-time packet delivery. The generality of the proposed framework allows integrating both data-driven \blue{Deep Reinforcement Learning (DRL)} agents and traditional rule-based policies in order to strike the right balance between performance and learning complexity. Our results confirm the superiority of the proposed framework with respect to traditional stochastic optimization-based approaches and provide key insights into the role and interplay between data-driven DRL agents and new rule-based policies for both efficient and high-performance control of latency-critical services.

Country of Origin
🇮🇹 🇺🇸 United States, Italy

Page Count
16 pages

Category
Computer Science:
Networking and Internet Architecture