Score: 1

Edgington's Method for Random-Effects Meta-Analysis Part I: Estimation

Published: October 14, 2025 | arXiv ID: 2510.12301v2

By: David Kronthaler, Leonhard Held

Potential Business Impact:

Improves how scientists combine study results.

Business Areas:
A/B Testing Data and Analytics

Meta-analysis can be formulated as combining $p$-values across studies into a joint $p$-value function, from which point estimates and confidence intervals can be derived. We extend the meta-analytic estimation framework based on combined $p$-value functions to incorporate uncertainty in heterogeneity estimation by employing a confidence distribution approach. Specifically, the confidence distribution of Edgington's method is adjusted according to the confidence distribution of the heterogeneity parameter constructed from the generalized heterogeneity statistic. Simulation results suggest that 95% confidence intervals approach nominal coverage under most scenarios involving more than three studies and heterogeneity. Under no heterogeneity or for only three studies, the confidence interval typically overcovers, but is often narrower than the Hartung-Knapp-Sidik-Jonkman interval. The point estimator exhibits small bias under model misspecification and moderate to large heterogeneity. Edgington's method provides a practical alternative to classical approaches, with adjustment for heterogeneity estimation uncertainty often improving confidence interval coverage.

Country of Origin
🇨🇭 Switzerland

Repos / Data Links

Page Count
42 pages

Category
Statistics:
Methodology