Score: 0

Higher power polyadic group rings

Published: October 15, 2025 | arXiv ID: 2510.14029v2

By: Steven Duplij

Potential Business Impact:

Creates new math for secret codes and fixing errors.

Business Areas:
Advanced Materials Manufacturing, Science and Engineering

This paper introduces and systematically develops the theory of polyadic group rings, a higher arity generalization of classical group rings $\mathcal{R}[\mathsf{G}]$. We construct the fundamental operations of these structures, defining the $\mathbf{m}_{r}$-ary addition and $\mathbf{n}_{r} $-ary multiplication for a polyadic group ring $\mathrm{R}^{[\mathbf{m} _{r},\mathbf{n}_{r}]}=\mathcal{R}^{[m_{r},n_{r}]}[\mathsf{G}^{[n_{g}]}]$ built from a nonderived $(m_{r},n_{r})$-ring and a nonderived $n_{g}$-ary group. A central result is the derivation of the "quantization" conditions that interrelate these arities, governed by the arity freedom principle, which also extends to operations with higher polyadic powers. We establish key algebraic properties, including conditions for total associativity and the existence of a zero element and identity. The concepts of the polyadic augmentation map and augmentation ideal are generalized, providing a bridge to the classical theory. The framework is illustrated with explicit examples, solidifying the theoretical constructions. This work establishes a new foundation in ring theory with potential applications in cryptography and coding theory, as evidenced by recent schemes utilizing polyadic structures.

Country of Origin
🇩🇪 Germany

Page Count
18 pages

Category
Mathematics:
Rings and Algebras