Quantitative Analysis of UAV Intrusion Mitigation for Border Security in 5G with LEO Backhaul Impairments
By: Rajendra Upadhyay , Al Nahian Bin Emran , Rajendra Paudyal and more
Potential Business Impact:
Stops bad drones from flying where they shouldn't.
Uncooperative unmanned aerial vehicles (UAVs) pose emerging threats to critical infrastructure and border protection by operating as rogue user equipment (UE) within cellular networks, consuming resources, creating interference, and potentially violating restricted airspaces. This paper presents minimal features of the operating space, yet an end-to-end simulation framework to analyze detect-to-mitigate latency of such intrusions in a hybrid terrestrial-non-terrestrial (LEO satellite) 5G system. The system model includes terrestrial gNBs, satellite backhaul (with stochastic outages), and a detection logic (triggered by handover instability and signal quality variance). A lockdown mechanism is invoked upon detection, with optional local fallback to cap mitigation delays. Monte Carlo sweeps across UAV altitudes, speeds, and satellite outage rates yield several insights. First, satellite backhaul outages can cause arbitrarily long mitigation delays, yet, to meet fallback deadlines, they need to be effectively bounded. Second, while handover instability was hypothesized, our results show that extra handovers have a negligible effect within the range of parameters we considered. The main benefit of resilience from fallback comes from the delay in limiting mitigation. Third, patrol UEs experience negligible collateral impact, with handover rates close to terrestrial baselines. Stress scenarios further highlight that fallback is indispensable in preventing extreme control-plane and physical security vulnerabilities: Without fallback, prolonged outages in the satellite backhaul delay lockdown commands, allowing rogue UAVs to linger inside restricted corridors for several seconds longer. These results underscore the importance of complementing non-terrestrial links with local control to ensure robust and timely response against uncooperative UAV intrusions.
Similar Papers
Mobility Induced Sensitivity of UAV based Nodes to Jamming in Private 5G Airfield Networks An Experimental Study
Networking and Internet Architecture
Tests how drones stay connected during fake signal attacks.
Design of RIS-UAV-Assisted LEO Satellite Constellation Communication
Information Theory
Makes satellite internet faster and more reliable.
Blockage-Aware UAV-Assisted Wireless Data Harvesting With Building Avoidance
Information Theory
Drones fly smart to give everyone fast internet.